66 Chemistry Letters 2001

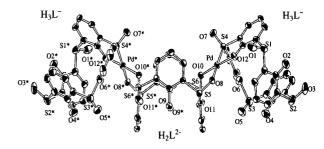
Synthesis and Structural Characterization of a Pd²⁺ Complex with *p-tert*-Butylsulfinylcalix[4]arene

Naoya Morohashi,* Nobuhiko Iki, Sotaro Miyano,* Takashi Kajiwara,*[†] and Tasuku Ito[†]
Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University,
Aramaki-Aoba 07, Aoba-ku, Sendai 980-8579

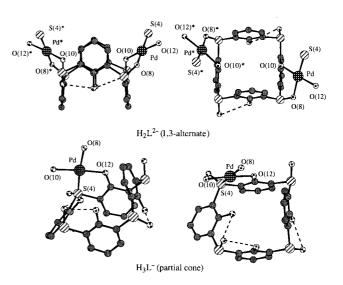
†Department of Chemistry, Graduate School of Science, Tohoku Universty, Sendai 980-8578

(Received October 25, 2000; CL-000974)

Single-crystal X-ray analysis has shown that *p-tert*-butyl-sulfinylcalix[4]arene (H_4L) can bind Pd^{2+} ion by using either S or O atoms of bridging S=O groups in addition to phenolic oxygen atoms to form in $[Pd_2(H_2L)(H_3L)_2]$ complex.


Soon after the discovery of the practical method for the synthesis of p-tert-butylthiacalix[4]arene (1), 1 we have been engaged in the development of its novel functions and applications, 2 which are not attainable by the conventional methylenebridged calix[4]arenes (e.g. 2). 3 One of the most noteworthy features of 1 is the ability to bind various soft metal ions by virtue of the cooperative ligation of the epithio function and the phenoxide oxygens as revealed by solvent extraction studies and X-ray crystallography. 4,5

The well-known ready oxidizability of an epithio function to the sulfinyl and/or sulfonyl group should be another attractive feature of 1. Thus, we first showed that 1 can be oxidized to either *p-tert*-butylsulfinyl- (3) or *p-tert*-butylsulfonylcalix[4] arene (4) by controlling the amounts of NaBO₃ as the oxidizing agent.⁶ Interestingly, conversion of S atoms to S=O groups allowed 3 to extract not only soft but also hard metal ions. Considering the fact that 1 can bind only soft metal ions as stated above, it seemed reasonable to presume that O atoms (hard donor) as well as S atoms (soft donor) of S=O groups of 3 should take part in the complexation with metal ions. For the first example to substantiate the hypothesis, herein we report the crystal structure of a 3-Pd²⁺ complex to show the ligation by both S and O atoms.


Treatment of 3 (H₄L) with a 4-fold excess of Pd(OAc)₂ in benzene afforded orange-colored complex. Vapor diffusion of MeOH into a solution of this complex in CH₂Cl₂ at room temperature gave a single crystal suitable for X-ray structural analysis.^{7,8}

As shown in Figure 1, 3-Pd²⁺ complex comprises one dianion (H_2L^{2-}) and two monoanion (H_3L^{-}) fused at the rims by two Pd²⁺ ions to have the composition of [$Pd_2(H_2L)(H_3L)_2$] and C_2

symmetry with symmetry axis passing through the center of the cavity of H_2L^{2-} . As is well known in calix[4]arene chemistry, there are four conformational isomers according to the orientation of four phenyl rings, that is, cone, partial cone, 1,2-alternate, and 1,3-alternate isomers. In fact, H_2L^{2-} adopts 1,3-alternate conformation in the complex, whereas two H_3L^- do partial cone conformation (Figure 2). Distal aromatic rings are equivalent each other in H_2L^{2-} , whereas all of the four aromatic rings are not equivalent in H_3L^- . This indicates that there are six kinds of aromatic rings in $[Pd_2(H_2L)(H_3L)_2]$. Importantly, two coordination modes of the sulfinyl group are observed in the

Figure 1. X-Ray structure of $[Pd_2(H_2L)(H_3L)_2]$. Bu' groups and H atoms are omitted for clarify.

Figure 2. Lateral (left) and top (right) views of the structures of H_2L^{2-} and H_3L^{-} . Bu' groups and H atoms are omitted for clarify.

complex. In H_2L^{2-} , sulfinyl and phenolate oxygen atoms coordinate to Pd^{2+} ion to form six-membered ring, whereas in H_3L^- , sulfinyl sulfur and phenolate oxygen coordinate to form five-membered ring.

In a square planer geometry, the bond length between Pd^{2+} and ligating atoms is 1.997(4) Å for Pd-O(12), 2.032(4) Å for Pd-O(10), 2.039(4) Å for Pd-O(8), and 2.1877(18) Å for Pd-S(4) (Table 1). The coordination of the S=O group affected the bond length: the S=O, in which O atom coordinates to Pd^{2+} ion, slightly elongates (1.529(4) Å) as compared to free S=O groups (av 1.503 Å). On the other hand, the S=O, in which S is doner to metal ion, shortens (1.457(4) Å).

Table 1. Selected bond distances (Å) and angles (deg) for $[Pd_2(H_2L)(H_3L)_2]$ complex

Pd-S(4)	2.1877(18)	O(8)-Pd-O(10)	94.80(15)
Pd-O(8)	2.039(4)	O(8)-Pd-O(12)	86.78(15)
Pd-O(10)	2.032(4)	O(12)-Pd-S(4)	87.01(12)
Pd-O(12)	1.997(4)	S(4)-Pd-O(10)	91.67(12)
S1-O(1)	1.492(5)		
S2-O(3)	1.509(6)		
S4-O(7)	1.457(4)		
S5-O(8)	1.529(4)		

Another noticeable structural feature of the complex is the intramolecular hydrogen bonding. It has been revealed that in the crystal state the free $\rm H_4L$ adopts 1,3-alternate conformation, which is stabilized by four pairs of $\rm OH\cdots O=S$ hydrogen bondings between OH and the neighboring $\rm S=O.^9$ The similar hydrogen bondings are observable in the complex between OH and $\rm S=O$ [O···O = av 2.732 Å] not participating in the coordination (Figure 2). It should be noted that the bifurcated one, $\rm OH\cdots O(=S)\cdots HO$, exists in $\rm H_3L^-$, which is caused by the *syn*-orientation of the two phenol rings.

The ^1H NMR of single crystal spesies $[\text{Pd}(\text{H}_2\text{L})(\text{H}_3\text{L})_2]$ dissolved in CDCl $_3$ exhibited six pairs of *meta* coupled doublets for aromatic protons and six singlet peaks of ^7Bu groups. 7 This suggests the existence of six kinds of aromatic rings and therefore C_2 symmetry of the complex is kept in solution. It should also be noted that four pair of intramolecular OH···O=S bonds are retained as judged by the $\delta_{\rm H}$ values.

In conclusion, the X-ray structure analysis of $[Pd_2(H_2L)(H_3L)_2]$ complex has revealed that either S or O atoms of bridging S=O groups can bind cationic metal center. The crystallographic study of complexes of $\bf 3$ with other metal ions (including hard Ti^{4+} ion) are now underway.

This work was supported by JSPS Research for the Future Program and by a Grant-in-Aid for Scientific Resarch on Priority Areas (No. 10208202) from the Ministry of Education, Science, Sports and Culture, Japan.

References and Notes

1 H. Kumagai, M. Hasegawa, S. Miyanari, Y. Sugawa, Y. Sato, T. Hori, S. Ueda, H. Kamiyama, and S. Miyano,

- Tetrahedoron Lett., 38, 3971 (1997).
- 2 N. Morohashi, N. Iki, T. Onodera, C. Kabuto, and S. Miyano, *Tetrahedron Lett.*, 41, 5093, (2000), and references are cited therin.
- 3 C. D. Gutsche, "Calixarenes," in "Monographs in Supramolecular Chemistry," ed. by J. F. Stoddart, The Royal Society of Chemistry, Cambridge (1989); "Calixarenes A Versatile Class of Macrocyclic Compounds," ed. by J. Vicens, V. Böhmer, Kluwer Academic, Dordrecht, (1991); C. D. Gutsche, "Calixarenes Revisited," in "Monographs in Supramolecular Chemistry," ed. by J. F. Stoddart, The Royal Society of Chemistry, Cambridge (1998).
- 4 N. Iki, N. Morohashi, F. Narumi, and S. Miyano, *Bull. Chem. Soc. Jpn.*, **71**, 1597, (1998).
- N. Iki, N. Morohashi, C. Kabuto, and S. Miyano, *Chem. Lett.* 1999, 219.
- 6 N. Iki, H. Kumagai, N. Morohashi, K. Ejima, M. Hasegawa, S. Miyanari, and S. Miyano, *Tetrahedron Lett.*, 39, 7559, (1998); cf. G. Mislin, E. Graf, M. W. Hosseini, A. D. Cian, and J. Fischer, *Chem. Commun.*, 1998, 1345.
- To a solution of 3 (50.0 mg, 0.064 mmol) in benzene (5 mL) was added Pd(OAc)₂ (57.2 mg, 0.25 mmol). The reaction mixture was refluxed for 3 h. After cooling, the brown precipitate was collected by filtration, washed with hexane and dried in vacuo to give crude product. Orange single crystals were formed by recrystallization from CH₂Cl₂-MeOH solution. m.p. 318 °C (decomp.) IR (KBr) 3437(O-H), 2961(C-H),1001(S=O); ¹H NMR(CDCl₃, 27 °C) δ 0.96 (s, 9H, CMe₃), 1.07 (s, 9H, CMe₃), 1.20 (s, 9H, CMe₃), 1.41 (s, 9H, CMe₃), 1.42 (s, 9H, CMe₃), 1.46 (s, 9H, CMe₃), 6.27 (d, 2H, J = 2.20 Hz, ArH), 6.83 (d, 2H, J = 2.31 Hz, ArH), 7.16 (d, 2H, J = 2.28 Hz, ArH), 7.35 (d, 2H, J = 2.47 Hz, ArH), 7.41 (d, 2H, J = 2.47 Hz, ArH), 7.58 (d, 2H, J = 2.31 Hz, ArH), 7.62 (d, 2H, J = 2.31 Hz, ArH), 7.64 (d, 2H, J = 2.20Hz, ArH), 7.70 (d, 2H, J = 2.28 Hz, ArH), 8.16 (d, 2H, J =2.31 Hz, ArH), 8.34 (d, 2H, J = 2.28 Hz, ArH), 8.38 (d, 2H, J = 2.28 Hz, ArH), 8.39 (s, 2H, OH), 8.64 (s, 2H, OH), 9.05 (s, 2H, OH), 9.93 (s, 2H, OH).
- Single-crystal X-ray analysis on [Pd₂(H₂L)(H₃L)₂]·12H₂O was performed on a Bruker Smart1000 system. A hemisphere of data was collected using a combination of ϕ and ω scans, with 0.3° frame widths. The data were corrected for absorption using an analytical technique. Crystal data: monoclinic, space group C2/c, a = 44.127(15) Å, b = 13.172(5) Å, $c = 27.081(9) \text{ Å}, \beta = 92.040(6)^{\circ}, Z = 4, V = 15731(9) \text{ Å}^3 T =$ 293 K, ρ (calc) = 1.174 g/cm³, μ = 0.452 mm⁻¹, λ = 0.71073 Å, $2\theta_{\text{max}} = 45.2^{\circ}$, total data 30314, unique data 10262 ($R_{\text{int}} =$ 0.0856), R/R_w $[I > 2\sigma(I)] = 0.0698/0.1777$. All non-hydrogen atoms refined anisotropically. Hydrogen atom positions were idealized and refined using a riding model. SHELXTL version 5.1 was used for structure solution, refinement based on F^2 , and publication materials. Four t-butyl groups on the H₂L were disordered and were refined in two positions with equal occupancies.
- 9 G. Mislin, E. Graf, M. W. Hosseini, A. D. Cian, and J. Fisher, *Tetraedron Lett.*, **40**, 1129, (1999).